Machine Learning in Multimodal Medical Imaging

نویسندگان

  • Yong Xia
  • Zexuan Ji
  • Andrey Krylov
  • Hang Chang
  • Weidong Cai
چکیده

1Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China 2School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 3Faculty of Computational Mathematics & Cybernetics, Lomonosov Moscow State University, Moscow, Russia 4Berkeley Biomedical Data Science Center (BBDS), Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 5Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, University of Sydney, Sydney, NSW 2006, Australia

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey of Machine Learning Algorithms for Disease Diagnostic

In medical imaging, Computer Aided Diagnosis (CAD) is a rapidly growing dynamic area of research. In recent years, significant attempts are made for the enhancement of computer aided diagnosis applications because errors in medical diagnostic systems can result in seriously misleading medical treatments. Machine learning is important in Computer Aided Diagnosis. After using an easy equation, ob...

متن کامل

Medical Image Retrieval: A Multimodal Approach

Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical pr...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Applications of Deep Learning and Reinforcement Learning to Biological Data

Rapid advancement in the hardware based technologies over past decades opened up new possibilities for Biological and Life scientists to gather multimodal data from various application domains (e.g., Omics, Bioimaging, Medical Imaging, and [Brain/Body]-Machine Interfaces). Novel data intensive machine learning techniques are required to decipher these data. Recent research in Deep learning (DL)...

متن کامل

Interactive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach

Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label info...

متن کامل

Exploratory analysis of using supervised machine learning in [18F] FDG PET/CT images to predict treatment response in patients with metastatic and recurrent Brest tumors

Aim: Despite grate progress in treatments, breast cancer is still the most common invasive cancer and the most cause of cancer related death in women. Treatment could be improved and perhaps standardized if more reliable markers for tumour progression and poor prognosis could be developed. The aim of this study was to evaluate whether patient-based machine learning (ML) driven ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017